HAIO Healthcare Surge Solutions
Creating Healthcare Settings for Post Acute Care for Covid-19 Patients in Non-Traditional Spaces
April 20, 2020
Table of Contents

A. Introduction:
1. Participation
2. What is HAIO, Surge Solutions Committee Structure
3. Healthcare Representative Roundtable Lessons Learned
4. Maps of Prospective Payment System (PPS) Hospitals and Critical Access Hospitals (CAH)
5. Defining Post-Acute patients and Post-Acute Care
6. Working Group Process

B. Covid-19 Patient Flow to Post-Acute Care Flow Chart & Site Appropriateness Selection Tool:

C. Checklists and Diagrams for Conversion of Non-Traditional spaces for Post-Acute Care:
1. Strategies for converting **existing healthcare facilities** for Covid19 post-acute care
2. Strategies for converting **hotels & dorms** for Covid19 post-acute care
3. Strategies for converting **conference centers and sports facilities** for Covid19 post-acute care
4. Strategies for **modular and tent** applications for multiple site conversions

D. Resources - Sharing information and Library Access
<table>
<thead>
<tr>
<th>Participants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arup</td>
<td></td>
</tr>
<tr>
<td>Atrius Health</td>
<td></td>
</tr>
<tr>
<td>Baystate Health</td>
<td></td>
</tr>
<tr>
<td>Beth Israel Deaconess Medical Center</td>
<td></td>
</tr>
<tr>
<td>BI Lahey Health</td>
<td></td>
</tr>
<tr>
<td>BR+A Consulting Engineers</td>
<td></td>
</tr>
<tr>
<td>Boston Medical Center</td>
<td></td>
</tr>
<tr>
<td>Boston Children’s Hospital</td>
<td></td>
</tr>
<tr>
<td>Boston Society of Architects</td>
<td></td>
</tr>
<tr>
<td>Brigham and Women’s Hospital</td>
<td></td>
</tr>
<tr>
<td>CannonDesign</td>
<td></td>
</tr>
<tr>
<td>Colliers Project Leaders</td>
<td></td>
</tr>
<tr>
<td>Commodore Builders</td>
<td></td>
</tr>
<tr>
<td>Connecticut Children’s Hospital</td>
<td></td>
</tr>
<tr>
<td>Consigli</td>
<td></td>
</tr>
<tr>
<td>Creative Office Pavilion</td>
<td></td>
</tr>
<tr>
<td>Dartmouth Hitchcock Hospital</td>
<td></td>
</tr>
<tr>
<td>e4h architecture</td>
<td></td>
</tr>
<tr>
<td>FGI - Facilities Guidelines Institute</td>
<td></td>
</tr>
<tr>
<td>Gensler</td>
<td></td>
</tr>
<tr>
<td>Harvard University Capital Project</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>HC Tangram Design</td>
<td></td>
</tr>
<tr>
<td>HDR</td>
<td></td>
</tr>
<tr>
<td>HED</td>
<td></td>
</tr>
<tr>
<td>Heywood Hospital</td>
<td></td>
</tr>
<tr>
<td>HDS Architecture</td>
<td></td>
</tr>
<tr>
<td>HGA</td>
<td></td>
</tr>
<tr>
<td>Indigo</td>
<td></td>
</tr>
<tr>
<td>The Innova Group</td>
<td></td>
</tr>
<tr>
<td>Jensen Hughes</td>
<td></td>
</tr>
<tr>
<td>Lavallee Brensinger Architects</td>
<td></td>
</tr>
<tr>
<td>Maine Medical Center</td>
<td></td>
</tr>
<tr>
<td>Margulies Perruzzi Architects</td>
<td></td>
</tr>
<tr>
<td>Massachusetts General Hospital</td>
<td></td>
</tr>
<tr>
<td>McGovern Foundation</td>
<td></td>
</tr>
<tr>
<td>Navilean</td>
<td></td>
</tr>
<tr>
<td>NBBJ</td>
<td></td>
</tr>
<tr>
<td>New England Life Care</td>
<td></td>
</tr>
<tr>
<td>Partners HC</td>
<td></td>
</tr>
<tr>
<td>Payette</td>
<td></td>
</tr>
<tr>
<td>Perkins and Will</td>
<td></td>
</tr>
<tr>
<td>Shepley Bulfinch</td>
<td></td>
</tr>
<tr>
<td>SmithGroup</td>
<td></td>
</tr>
<tr>
<td>Stamford Hospital</td>
<td></td>
</tr>
<tr>
<td>Steward Health</td>
<td></td>
</tr>
<tr>
<td>Stroudwater Associates</td>
<td></td>
</tr>
<tr>
<td>Suffolk Construction</td>
<td></td>
</tr>
<tr>
<td>Trinity Health of New England</td>
<td></td>
</tr>
<tr>
<td>Thompson Consultants, Inc.</td>
<td></td>
</tr>
<tr>
<td>Tsoi Kobus Design</td>
<td></td>
</tr>
<tr>
<td>Turner Construction</td>
<td></td>
</tr>
<tr>
<td>UMass Memorial Health Care</td>
<td></td>
</tr>
<tr>
<td>UMass Medical School</td>
<td></td>
</tr>
<tr>
<td>Walsh Brothers</td>
<td></td>
</tr>
<tr>
<td>Winchester Hospital</td>
<td></td>
</tr>
<tr>
<td>Wise Construction</td>
<td></td>
</tr>
<tr>
<td>Yale New Haven Hospital</td>
<td></td>
</tr>
</tbody>
</table>
HAIO began in 2013, and is a collaborative nonprofit consisting of hospital professionals, infection control and environmental service representatives, project management teams, architects, engineers, and construction professionals, all with the mission to explore ways to reduce the spread of healthcare associated infections through the use of architecture, design and construction.

Since 2015, the HAIO group has been actively working with two Boston area hospitals as they redesign current inpatient rooms to reduce the risk of patient infection.

Our mission: to listen and help healthcare organizations respond to crisis conditions as they identify their needs.

Our role: to manage the assessment of options, and deployment of immediate response action contingency plans, to provide surge space solutions to healthcare organizations in response to crisis conditions.

The committee structure has been formed to channel the resources of HAIO towards providing collaborative, specific responses as requested.
Lessons Learned from Roundtable Discussions for Post Acute Care

Thank you to our roundtable participants:
Walter Armstrong, Beth Israel Deaconess Medical Center
Win Brown, Heywood Hospital
Domenic Ciavarro, Trinity Health
Tom Goins, Dartmouth Hitchcock Health
Patrick Jordan, Dartmouth Hitchcock Health
Kris Kennedy, Baystate Health
Michael Knapik, Baystate Health
Dr. Mark Klempner, Univ. of Massachusetts Medical School
Jennifer McCarthy, Maine Medical Center
Vincent McDermott, Newton Wellesley Hospital
John Messervy, Partners HealthCare
Dr. Peter Slavin, Massachusetts General Hospital
Dr. Steven Stroudwater, Atrius Health
Dana Swenson, Umass Memorial Health Care
Kirsten Waltz, Baystate Health
Dr. Rick Weiner, Winchester Hospital
Brendan Whalen, Boston Medical Center
Lessons Learned – Considerations for Future Planning and Design

A. Building design/renovation
 1. Consider adding operable windows to older buildings so can attain negative pressure by addition of exhaust fans.
 2. Flexible construction that allows conversion of med/surg beds to ICUs (sufficient clearance and med gases).
 3. Consider inclusion of non-invasive procedure rooms with negative pressure.
 4. Consider providing additional infrastructure to some non-clinical areas (e.g. conference centers) so that more areas can be adapted for patient care.
 5. Application of the known infection prevention strategies for the built environment (e.g. hands-free door openers) to stop transmission.
 6. Allocate special rooms for disinfection of PPE (or at least be able assign space to this function at time of emergency.
 7. Provide additional warehousing for storing PPE, so not so dependent on supply chains.
 8. Spaces for staff respite: with all staff in full PPE, they need to be able to take breaks near their clinical units, decompress, while maintaining social distancing.
 9. Provision of maker spaces with 3D printing capability – to respond to immediate needs.
B. Regulatory
 1. Perhaps FGI might consider allowing “switchable” pressurization of rooms (i.e., from positive to negative pressure)?
 2. Should it be mandatory that facilities have a plan for using exterior space for setting up mobile sites? Regulations to include requirements for building pads (e.g. utilities, med gases).

C. Mechanical Systems
 1. Provide HEPA filtration everywhere in IP settings.
 2. Consider oxygen capacity – size for potential respiratory pandemics.
 3. Build in ability to convert more rooms to negative pressure.

D. Access/Patient Flow
 1. Consider Disney-like flow into hospitals/clinics, allowing for space for social distancing; providing positive distraction to help with the wait times for screening or security.
 2. Separate entry points for staff vs. patients/visitors; how to separate well patients exiting the facility from potentially sick/infectious patients arriving?
E. **Operational Change**
 1. For hospital networks, level loading of patient care within the system is a successful strategy for expanding capacity.
 2. Continuous masking be the norm.
 3. Greater use of hydrogen peroxide “bombing” of rooms and equipment.

F. **Preparing for mobile sites – building extensions**
 1. Hospital/healthcare facilities should have plans and infrastructure set up to support mobile sites/tents that allow for surge capacities, equipped with utilities, med gases.

G. **Emergency Planning**
 A. Consider planning dorms and hotels for future emergency conversion to patient care, rather than relying on tents and convention centers.
 B. It is the collaborative efforts, between the state and institutions, between independent institutions, with various facilities within a network, with the architectural/engineering/builder/vendor community, that lead to successful solutions.
There are +/- 5,300 hospitals in the country. The diagram shows two of the main types of hospitals, Prospective Payment System (PPS) Hospitals shown in blue make up about 80% of acute hospitals. The other 20%, shown in red, are Critical Access Hospitals (CAH).
The Prospective Payment System Hospitals (PPS) include a tremendous range of hospitals, from large academic medical centers and large community hospitals all the way down to small rural hospitals.
Critical Access Hospitals are determined by many criteria, including having fewer than 25 beds, average length of stay less than 96 hours (although this has been relaxed due to COVID-19) and being located a prescribed distance from any other hospital. Often, they are several hours from any kind of tertiary hospital. A surge of even a small number of COVID-19 patients has the ability to quickly strain the resources of the hospital and staff. The majority of these rural communities can benefit now from contingency planning of alternate spaces to address potential influx scenarios.
Definitions

What is an acute care facility?

Acute care is immediate, high-level medical care for people suffering from serious injury, exacerbation of an existing illness, and other urgent medical conditions that require an intensive level of treatment and observation. Acute care facilities actively address life-threatening or limb-threatening conditions until the patient can be safely treated with a lower level of care. The length of stay in an acute care facility depends on the specific condition and the requirements of the patient, but stays are generally shorter in duration. A hospital is an example of an acute care facility.

What is subacute care?

Subacute care takes place after or instead of a stay in an acute care facility. Subacute care provides a specialized level of care to medically fragile patients, though often with a longer length of stay than acute care. Many patients with acute illness or injury require comprehensive care that includes frequent assessments and procedures to manage their condition. People with pulmonary disease, cardiac disease, cancer, and conditions requiring IV therapy or tube feedings may need subacute care after a hospital stay. Subacute care can include dialysis, chemotherapy, ventilation care, complex wound care, and other inpatient medical and nursing services.

What is post-acute care?

While post-acute care also provides continued medical treatment after a hospital stay, it maintains an emphasis on recuperation, rehabilitation, and symptom management. Patients in recovery from cardiac or pulmonary disease, stroke or neurological disorders, or orthopedic surgery often require rehabilitative therapies to help bridge the gap between hospital and home. The goal of post-acute rehabilitation is to maximize patient wellness and independence so they can get back to the business of living their best lives. Post-acute care services range from intensive short-term rehab to longer-term restorative care. Some patients will achieve full recovery, while others learn to manage the symptoms of a chronic illness.
Working Group Process

1. 4 Sub-committees were established to address Surge Capacity for Post-Acute Care Patients:
 • Conversion Existing Healthcare Facilities
 • Conversion Existing Non-Healthcare Facilities – Hotels and Dorms
 • Conversion Existing Non-Healthcare Facilities – Convention Centers and Arenas
 • New Facilities – Modular / Tents
2. Approximately 15-25 volunteers have participated in each work session.
3. Collaborative effort of architects, engineers, contractors, owners’ project managers, and vendors
4. Groups have had some variation in the interpretation of the charge; this has led to a richness of material that you will all soon see
5. All have been developing surge capacity solutions from the broad lens of infection prevention – including protecting patients, clinicians and staff.
Covid-19 Patient Flow to Post-Acute Care Flow Chart

- Testing
 - Symptoms
 - Triage
 - Inpatient Care?
 - Critical Care
 - Med/Surg Care
 - N: Post Acute Care
 - N: Quarantine
 - Home
- Y: Home
HAIO Healthcare Surge Solutions

Site Appropriateness Selection Tool

This tool can be used to compare and assess the viability of any given location(s) or scenario(s) for providing additional surge bed capacity. To best utilize this form:

1. Identify the location(s) or scenario(s) being considered for the type of bed capacity needed.
2. Review each cost item and rank accordingly for the location(s) or scenario(s) selected for comparison.
3. First select the estimated construction time frame for the location(s) or scenario(s) selected. Then review each cost item and rank for the location(s) or scenario(s) selected.
4. Review each cost item and rank accordingly for the location(s) or scenario(s) selected for comparison.

The column with the highest total indicates the most appropriate location or scenario.

Operational Qualities

<table>
<thead>
<tr>
<th>Description</th>
<th>Type & Additional Bed Need</th>
<th>E7</th>
<th>E8</th>
<th>E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laundry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shovels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation of Flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infrastructure Availability

<table>
<thead>
<tr>
<th>Description</th>
<th>Type & Additional Bed Need</th>
<th>E7</th>
<th>E8</th>
<th>E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminated Water Holding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sewer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Lighting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital/Structural Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ice Machine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Gas Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Propagation

<table>
<thead>
<tr>
<th>Description</th>
<th>Type & Additional Bed Need</th>
<th>E7</th>
<th>E8</th>
<th>E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction/Construction Time Frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 4 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total (maximum of 136 points)

<table>
<thead>
<tr>
<th>Description</th>
<th>Type & Additional Bed Need</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Example Site Comparison Evaluation

<table>
<thead>
<tr>
<th>Description</th>
<th>Type & Additional Bed Need</th>
<th>E7</th>
<th>E8</th>
<th>E9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed Need</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROPOSED ADDITIONAL BED CAPACITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This tool can be used to compare and assess the viability of any given location(s) or scenario(s) for providing additional surge bed capacity. To best utilize this form:

1. Identify the location(s) or scenario(s) being considered for the type of bed capacity needed.
2. Review each cost item and rank accordingly for the location(s) or scenario(s) selected.
3. First select the estimated construction time frame for the location(s) or scenario(s) selected. Then review each cost item and rank for the location(s) or scenario(s) selected.
4. Review each cost item and rank accordingly for the location(s) or scenario(s) selected for comparison.

The column with the highest total indicates the most appropriate location or scenario.
Existing Facilities within Hospital Networks for Post Acute Care

Jessica Stebbins, HDR (sub-committee chair)
Milly Baker, HGA
Richard Barnett, Colliers Project Leaders
Gretchen Battle, CannonDesign
Sean Brice, Thompson Consultants, Inc.
Win Brown, Heywood Hospital
Andrew Brumbach, SmithGroup
Allen Buie, HDR
Matthew Cotton, SmithGroup
Jason D’Antona, Partners Healthcare
Doug Erickson, FGI
Jeff Galvin, Lavallee Brensinger Arch.
Keith Garratt, SmithGroup
Anne Garrity, Tsoi Kobus Design
Kieran Guinan, Thompsons Consultants, Inc.
Ronald Hayduk, Indiogorem
Anna Mancini, HGA
Sarah Markovitz, NBBJ
Frank Morse, Walsh Brothers
Scott Mueller, Shepley Bulfinch
Daniel Quinn, Colliers Project Leaders
Deborah Rivers, HDR
Michael Roughan, HDR
Alberto Salvatore, HED
Amy Sowersby, Turner Healthcare
Dale Taglienti, E4H Architecture
Cynthia Tsao, Navilean
Wendy Weitzner, The Innova Group
Greg Wells, HDR
Teresa Wilson, Colliers Project Leaders
Kathleen Woods, HDR
Evan Wyner, Colliers Project Leaders
Bobbe Young, HED
Existing facilities within hospital network
• Facility needs different based on patient needs

PATIENT TYPES
Type 1. Per other HAIO groups working on “Post Acute”
• Covid positive patients only
• Have been discharged from the hospital but cannot go home either due to:
 − Medical needs (minor medical attention still required)
 − Social needs (lives alone, has inappropriate or no housing, etc.) or inability to
 be placed (such as a nursing home patient who cannot return to the nursing
 home due to Covid status)

Type 2. Spaulding Cambridge LTAC COVID 19 Dedicated Unit “Sub Acute”

Medium and complex patients who will need oxygen and suction setups.
• Dedicated unit for Covid positive patients only
• Private rooms required for Covid positive patients that are on nebulized therapy,
 vented, open trach, Bipap/Cipap. They need to remain in their rooms.
• Cohort Covid positive patients utilizing semiprivate and private rooms.

NOTE: These are still relatively acute “hospital” patients

FACILITY / SPACE TYPE
AMC’s, Community Hospitals, Critical Access
• Closed Units
• Shell Space
• Med / Surg Beds
• Prep-recovery
• Conference Centers
• Rehab Gym
• Administration
• Main Lobby
Closed Hospital
Medical Office Buildings
Ambulatory Surgical Centers
Rehabilitation Hospitals
LTACs (Long term Acute Care Facility)
Skilled Nursing Facility
HomeCare

NOTE: Bolded are spaces considered in the following slides:
Site Appropriateness
• Key Considerations

Building / Space Assessment
- Check list items
 - MEP/FP Life Safety Infrastructure
 - Emergency Backup
 - IT BackBone Infrastructure
 - Supply-chain / Logistics / Loading Dock
 - Patient Transport Capabilities
 - Building & Site Area / Parking
 - Building Egress & Security
 - Local Regulatory Agencies
 - ADA/Accessibility
 - Waste Management
 - Central Sterile
 - Morgue

Operational Qualities
- Check list items
 - Bed Capacity / Patients per Sq Ft
 - Staffing Efficiency / Caregiver per Patient Ratio
 - Sight Lines
 - Separation of Clean / Dirty Flows
 - Space for Donning/Doffing
 - Food Service / Delivery Access
 - Equipment & Materials Storage
 - Pharmacy / Medical Supply Access
 - Rehabilitation PT/OT Space
 - Safety to Healthcare Providers
 - Staff Respite Space / On-Call Rooms
 - Proximity to AMC

Time & Costs
- Check list items
 - Deployable/Limited Make-Ready Requirements
 - Local Prefabrication Capability
 - Labor Market
 - Robust Wireless System
 - Reusability vs. Permanence / Impact on Space Long-Term
 - Construction Cost Estimate
 - Design & Construction Schedule
 - Report – Prioritize Recommendations

Existing Facilities within Hospital Networks 20
Site Adaptation

- How to adapt your site to accommodate post-acute care

Recommission Closed Hospital

Check list items
- Inventory Amount of Private versus Non-Private Spaces; Negative Pressure / Isolation
- Life Safety / Infrastructure
- Testing of systems, Med Gas, IT, HVAC, Emergency Power
- Bulk Oxygen Tank Capacity
- Cleaning of Facility & Systems
- Interior Environment Suitability / Healthy vs Hazardous
- Understand Site Access & Building Egress
- Evaluate Construction Logistics

Convert Closed Unit or Other Clinical Space (e.g. PACU)

Check list items
- Inventory Amount of Private versus Non-Private Spaces Negative Pressure / Isolation
- Check Pressurization to Adjacent Spaces
- Test of systems, Med Gas, IT, HVAC, Emergency Power.
- Cleaning of Facilities & Systems
- Interior Environment Suitability/ Healthy vs Hazardous.
- Ensure Interior Finishes are Easily Cleanable

Convert Non-Patient Room Spaces

Check list items
- Quantify Capacity of “Ward Type” # of Beds
- Ensure Adequate Power and Plumbing are Available
- Temp / Additional IT Network Infrastructure
- Use of Temporary Modular Systems
- Develop Protocols for Portable Oxygen and Gases
- Ensure Capability to Separate Covid and Non-Covid Patients

Steps needed if only for Type 1/true post-acute & custodial patients
Site Adaptation

• How to adapt your site to accommodate post-acute care

Ambulatory Surgical Center
- Check list items
 - Inventory Amount of Private versus Non-Private Spaces
 - Check Pressurization to Adjacent Spaces
 - Check Humidity, Life Safety, Generators
 - Develop Protocols for Portable Oxygen and Gases
 - Ensure Capability to Separate Covid and Non-Covid Patients
 - Interior Environment Suitability
 - Assess Parking Capacity
 - Food Service

Medical Office Building
- Check list items
 - Inventory Amount of Private versus Non-Private Spaces
 - Confirm HVAC suitability – Ducted vs Open Plenum
 - Check Humidity, Life Safety
 - Temporary Generators?
 - Develop Protocols for Portable Oxygen and Gases
 - Temporary Bulk Oxygen Tank
 - COVID Positive Patients Only
 - Interior Environment Suitability
 - Food Service

Home Care
- Check list items
 - Test Internet Connectivity
 - Train Patients & Family on Virtual Care Usage
 - Train Patients & Family in Infection Control Techniques
 - Assess Space for Accessibility (if Applicable)
 - Organize Space Into “Dirty” and “Clean” Areas
 - Visiting Nurse, PT and OT
 - Develop Quarantine Space for Patient With Majority of Needed Items for Daily Living

Steps needed if only for Type 1/true post-acute & custodial patients
Operational Flows

• To Hospital Covid-19 + Post Acute Care
MED/SURG Unit Conversion Diagram

Existing Space Benefits
1. Private patient rooms – can be used for double occupancy
2. Medical Gasses, Power, Tel/Data
3. Nurse stations & support space for staff
4. Clean, Soil, Nour & Equipment Space
5. Life safety provisions
6. Ability to Isolate elevator cores

Changes Recommended
1. Convert to negative pressure
2. Ante rooms for donning & doffing
3. Remove excess furniture and equipment in patient rooms
4. Privacy for patients

Challenges
1. Infection control at entry / exit

Infrastructure
- All necessary infrastructure is available in a med/surg suite for post acute care

Staff Flow
- Control clean and dirty entries with ante rooms

Patient Flow and Life Safety
- Good patient flow and egress from clinical spaces
Private Patient Room Conversion Diagram

Existing Space Benefits
1. Private patient rooms – can be used for double occupancy
2. Medical Gasses and power
3. Nurse stations & support space for staff
4. Clean, Soil, Nour & Equipment Space
5. Life safety provisions

Changes Recommended
1. Convert Unit to negative pressure or rooms to negative pressure (through window unit & portable exhaust fan w/HEPA filter)
2. Ante rooms for donning & doffing
3. Remove excess furniture and equipment in patient rooms
4. Privacy for patients

Challenges
1. Infection control at entry / exit

Infrastructure
• All necessary infrastructure is available in a med/surg suite for post acute care

Staff Flow
• Control clean and dirty entries with ante rooms

Patient Flow and Life Safety
• Good patient flow and egress from clinical spaces
PACU Conversion Diagram

Infrastructure
- All necessary infrastructure is available in a PACU suite for post acute care

Staff Flow
- Control clean and dirty entries with ante rooms

Patient Flow and Life Safety
- Good patient flow and egress from clinical spaces

Existing Space Benefits
1. Patient recovery bays adequately sized
2. Medical Gasses and power
3. Nurse stations & support space for staff
4. Clean, Soil, Nour & Equipment Space
5. Cleanable surfaces
6. Life safety provisions

Changes Recommended
1. Convert to negative pressure
2. Ante rooms for donning & doffing
3. Remove excess furniture and equipment in patient bays

Challenges
1. Infection control at entry / exit
2. Limited patient toilets
3. Limited privacy in suite
Rehab gym space conversion Diagram

HAIO Healthcare Surge Solutions Task Force

Existing Space Benefits
1. Existing appropriately sized bays
2. Normal power existing
3. Cleanable finishes
4. Clean and Soiled space
5. Enclosed staff viewing area
6. Enclosed examination spaces

Infrastructure
• Space not equipped for acute patients
• Need to confirm pressure differentials

Staff Flow
Multiple entry points may make material and staff flows unclear. Each site would need flows mapped and secured.

Changes Recommended
1. Create additional bays in Gym area
2. Create donning/doffing area

Challenges
1. Corridors may be small for stretcher
2. No emergency power
3. No bathing facility
4. Curtain only bays
5. No medical gases

Patient Flow and Life Safety
Depending on location in hospital may not have appropriate Life Safety or connection with all support spaces.
HAIO – Healthcare Surge Solutions Task Force April 24, 2020 Release 3

Conference Center

Existing Space Benefits
Repurpose Rooms to provide:
1. Patient Treatment Zone
2. Staff Respite and Work Areas
3. Communications / Command Center
4. Nourishment Room
5. Soiled Holding
6. Access to toilet facilities - separate staff and patients

Changes Recommended
• Create temporary patient treatment bays using mobile equipment and furniture
• Provide dedicated clean and soiled traffic flow
• Replace carpeting with hard, monolithic flooring

Challenges
• Not all facilities have a multi-room conference center
• Sizes and adjacencies differ
• Space is not equipped for mid to high level patient care – gases, neg air flow, etc.

Infrastructure
• Good adjacencies to support services
• Large open rooms to house multiple bays
• Strong IT capabilities

Staff Flow
• Create dedicated entry point to treatment bays with area for don/doff and handwashing.
• Create dedicated rooms for staff respite, work and communication center

Patient Flow and Life Safety
• Depending on size and location within the hospital, life safety requirements may be limiting

Existing Facilities within Hospital Networks
Conference Center – Patient Treatment Bay

Treatment Bay Equipment
1. Temporary Modular Wall
2. IV Stand
3. Sharps
4. Mobile Workstation
5. Linen Hamper
6. Hand Sanitizer Station x2
7. PPE

Treatment Bay Furniture
1. Hospital Bed / Stretcher
2. Patient Recliner / Chair
3. Overbed Table
4. Mobile Privacy Screen
Ambulatory Surgery Center

Existing Space Benefits
1. Existing healthcare use
2. Ease of community access / families know that loved ones are nearby
3. Suitability of finishes / materials
4. Availability of healthcare support spaces (meds, supplies, soil, equipment, toilets)
5. Built-in sterilization potential in SPD (for masks & equipment)
6. Utilize OR and Procedure Rooms to accommodate 1 to 3 beds; Endo Rooms are well-suited as they are always negative pressure

Changes Recommended
1. Move surplus furniture & equipment to vacated adjacent areas
2. Utilize patient discharge for patient in/out
3. Convert Waiting to command center, staff respite, PPE donning and doffing

Challenges
1. Remoteness if more intense care required or back-up clinical staff needed
2. Support availability – food, supplies, etc.

Infrastructure
- Built for healthcare, but not acute patient care
- Availability of medical gases

Staff Flow
- Separation of staff entry possible though ASC Waiting & or Control
- Dedicated Staff Respite and PPE Clean / soiled areas possible

Patient Flow and Life Safety
- Ambulatory Care compliant
- Separation of patient flow possible through patient discharge building exit
Homecare: Technology Systems

• Virtual check-in, telehealth visits, e-visits

Existing Space Benefits
1. Existing Administrative Space
2. Existing Call Center Space
3. Existing Patient Home WiFi
4. “Non-Public” Facing Applications
 1. Zoom, FaceTime, WhatsApp, Skype, Webex, Doxy.me
5. Third Party Telehealth Provider

Considerations
1. Balance Natural & In-Room Lighting
2. Avoid Background Noise
3. Test System(s) in Advance of Call
4. Charge/Power Device
5. Close Other Applications/Save Bandwidth
6. Close Proximity to WiFi Router
7. Wearable Patient Monitoring Devices

Challenges
1. Training of Staff and Patients
2. Timely Electronic Record Keeping
3. Maintaining Cyber Security Protocols
4. Threat & Liability of Patient Information
5. Reliability of Home Internet Access

Infrastructure
• Patients Home Internet Access
• Clinician Home Internet
• Existing Hospital/Third Party Network

Staff Flow
• Call Center
 • On Premise
 • Virtual
• Electronic Record Input
 • On Premise
 • Encrypted Virtually

Patient Flow
• Call Center Management System
• Virtual Check In
• Scheduled Telehealth & E-Visits
• HHS Relaxed Guidelines
Rehabilitation Hospital

Existing Space Benefits
1. Existing healthcare use
2. Ease of community access / families know that loved ones are nearby
3. Suitability of finishes / materials
4. Availability of healthcare support spaces (meds, supplies, soil, equipment, toilets)

Changes Recommended
1. Move surplus furniture & equipment to mobile trailers if space is not available in the facility
2. Utilize patient discharge for patient in/out
3. Convert Waiting to command center, staff respite, PPE donning and doffing

Challenges
1. Suspended use for out-patient rehabilitation

Infrastructure
- Built for healthcare out-patient and acute patient care
- Availability of medical gases on in-patient unit

Staff Flow
- Separation of staff entry
- Dedicated Staff Respite and PPE Clean / soiled areas available

Patient Flow and Life Safety
- Ambulatory Care and In-patient care compliant
- Separation of patient flow possible through patient discharge building exit
Rehabilitation Hospital

Existing Space Benefits
1. Existing healthcare use will allow immediate use of existing in-patient beds
2. Potential to add a bed in each room
3. Ease of community access / families know that loved ones are nearby
4. Suitability of finishes / materials
5. Availability of healthcare support spaces (meds, supplies, soil, equipment, toilets)
6. Utilize In-patient Gyms and Day Rooms for additional bed capacity.

Changes Recommended
1. Move surplus furniture & equipment to mobile trailers if space is not available in the facility

Challenges
1. Relocation of existing Rehab. Patients

Infrastructure
- Built for healthcare out-patient and acute patient care
- Availability of medical gases on in-patient unit

Staff Flow
- Separation of staff entry
- Dedicated Staff Respite and PPE Clean / soiled areas available

Patient Flow and Life Safety
- Ambulatory Care and In-patient care compliant
- Separation of patient flow possible through patient discharge building exit
Engineering Infrastructure Matrix

<table>
<thead>
<tr>
<th>What is Needed</th>
<th>Existing Hospital Closed Unit</th>
<th>Existing Hospital Shell Space</th>
<th>Existing Hospital Med/Surg Beds</th>
<th>Existing Hospital Prep/Rec Spaces</th>
<th>Existing Hospital Rehab Gym</th>
<th>Existing Hospital Conference Center</th>
<th>Existing Hospital Administration</th>
<th>Existing Hospital Main Lobby</th>
<th>Medical Office Building</th>
<th>Closed Hospital</th>
<th>Rehabilitation Hospital</th>
<th>Skilled Nursing Facility</th>
<th>LTAC Hospital</th>
<th>Home Care</th>
<th>Ambulatory Surgical Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convert Room/Space to Negative Pressure or Directional Airflow</td>
<td>Verify operation if any of HVAC systems</td>
<td>Extend ventilation systems</td>
<td>Verify Directional Airflow / Convert Return air systems to Exhaust</td>
<td>Verify Directional Airflow / Convert Return air systems to Exhaust</td>
<td>Verify Directional Airflow / Convert Return air systems to Exhaust</td>
<td>Verify Directional Airflow / Convert Return air systems to Exhaust</td>
<td>Verify Directional Airflow / Convert Return air systems to Exhaust</td>
<td>Verify Directional Airflow / Convert Return air systems to Exhaust</td>
<td>Convert Return to Exhaust in Exam Rms</td>
<td>Verify operation if any of HVAC systems</td>
<td>Verify Directional Airflow / Convert Return air systems to Exhaust</td>
<td>Verify Patient Toilet Exhaust operation / Verify PTAC operation</td>
<td>Verify Patient Toilet Exhaust operation / Verify PTAC operation</td>
<td>N/A</td>
<td>Convert Return to Exhaust in PACU / set up OR’s negative for wards</td>
</tr>
<tr>
<td>Modular Dividers (Reusable walls i.e., DIRT, STARC, Edgeguard, etc.)</td>
<td>N/A</td>
<td>POSSIBLE</td>
<td>N/A</td>
<td>N/A</td>
<td>ADD</td>
<td>ADD</td>
<td>N/A</td>
<td>POSSIBLE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Medical gases</td>
<td>N/A</td>
<td>ADD</td>
<td>N/A</td>
<td>N/A</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>POSSIBLE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ADD</td>
<td>N/A</td>
</tr>
<tr>
<td>Electrical</td>
<td>TEST</td>
<td>ADD</td>
<td>N/A</td>
<td>N/A</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>POSSIBLE</td>
<td>TEST</td>
<td>POSSIBLE</td>
<td>POSSIBLE</td>
<td>N/A</td>
<td>ADD</td>
</tr>
<tr>
<td>Video Streaming Device/Monitoring device (i.e., nicuview or something more low tech like a baby monitor or “RING” device)</td>
<td>ADD</td>
<td>ADD</td>
<td>N/A</td>
<td>N/A</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>ADJUST</td>
<td>ADD</td>
<td>ADD</td>
<td>ADD</td>
<td>N/A</td>
<td>ADD</td>
</tr>
<tr>
<td>Internet Connection</td>
<td>POSSIBLE</td>
<td>ADD</td>
<td>N/A</td>
<td>N/A</td>
<td>ADD</td>
<td>N/A</td>
<td>ADD</td>
<td>N/A</td>
<td>ADD</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ADD</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Hotels + Dorms for Post Acute Care

Kenneth Fisher, Gensler (sub-committee co-chair)
Patricia Nobre, Gensler (sub-committee co-chair)
Richard Barnett, Colliers Project Leaders
Alison Faecher, SmithGroup
Dominic Gagnon, Colliers Project Leaders
Randy Keiser, Turner Healthcare
Paul Kondrat, CannonDesign
Sarah Markovitz, NBBJ
Jeff Saad, Gensler
Matthew Tharp, Gensler
Dan Quinn, Colliers Project Leaders
Evan Wyner, Colliers Project Leaders
Site Evaluation for Post Acute Care

CORE CONSIDERATIONS

1. **Agility to Respond to COVID Surge**
 - Speed to market | Capacity | Pathway for Stretcher

2. **Infectious Disease Control**
 - Ventilation | Staff support areas

3. **Part of an Integrated Continuum of Care**
 - Location | Connectivity | Host Caregivers

4. **Ability to Support Broader Care**
 - Oxygen Tubes | Generator | Food Facilities | Laundry | Loading Dock | Parking

Hotel-Dorm

<table>
<thead>
<tr>
<th>Categories</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to Patient Ready</td>
<td>2</td>
</tr>
<tr>
<td>Capacity (consider ability to put 2 beds in large rooms)</td>
<td>2</td>
</tr>
<tr>
<td>Ease of Pathway for a stretcher from ambulance to room (Elevator with dimensions to move patient on stretcher)</td>
<td>1</td>
</tr>
<tr>
<td>Individual Heating and Cooling Units</td>
<td>1</td>
</tr>
<tr>
<td>Central exhaust (attention to distance between discharge and intake)</td>
<td>1</td>
</tr>
<tr>
<td>Private Restrooms</td>
<td>2</td>
</tr>
<tr>
<td>Access to handwashing and support space for staff beyond patient toilet rooms (wide corridors/use of room by elevator)</td>
<td>1</td>
</tr>
<tr>
<td>Adjacency to Acute Care Hospital/Screening</td>
<td>1</td>
</tr>
<tr>
<td>Robust WiFi</td>
<td>1</td>
</tr>
<tr>
<td>Ability to host caregivers</td>
<td>1</td>
</tr>
<tr>
<td>Ease of running oxygen tubes into rooms</td>
<td>1</td>
</tr>
<tr>
<td>Emergency generator</td>
<td>2</td>
</tr>
<tr>
<td>Food facilities</td>
<td>1</td>
</tr>
<tr>
<td>Laundry</td>
<td>1</td>
</tr>
<tr>
<td>Loading dock</td>
<td>1</td>
</tr>
<tr>
<td>Parking lot</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 7 days = 2</td>
</tr>
<tr>
<td>7 days ≤</td>
</tr>
<tr>
<td>> 21 days = 0</td>
</tr>
<tr>
<td>> 200 people = 2</td>
</tr>
<tr>
<td>> 75 people = 1</td>
</tr>
<tr>
<td>≤ 75 people = 0</td>
</tr>
<tr>
<td>accessible = 2</td>
</tr>
<tr>
<td>not accessible = 0</td>
</tr>
<tr>
<td>individual restrooms = 2</td>
</tr>
<tr>
<td>shared restrooms ≤ 2 patients = 1</td>
</tr>
<tr>
<td>shared restrooms > 2 patients = 0</td>
</tr>
<tr>
<td>yes = 1</td>
</tr>
<tr>
<td>no = 0</td>
</tr>
<tr>
<td>< 10 Mi = 1</td>
</tr>
<tr>
<td>> 10 Mi = 0</td>
</tr>
<tr>
<td>yes = 1</td>
</tr>
<tr>
<td>no = 0</td>
</tr>
<tr>
<td>yes = 1</td>
</tr>
<tr>
<td>no = 0</td>
</tr>
<tr>
<td>yes = 1</td>
</tr>
<tr>
<td>no = 0</td>
</tr>
<tr>
<td>able to keep facility operational = 2</td>
</tr>
<tr>
<td>life-safety and smoke controls = 1</td>
</tr>
<tr>
<td>not available = 0</td>
</tr>
<tr>
<td>yes = 1</td>
</tr>
<tr>
<td>no = 0</td>
</tr>
<tr>
<td>yes = 1</td>
</tr>
<tr>
<td>no = 0</td>
</tr>
<tr>
<td>yes = 1</td>
</tr>
<tr>
<td>no = 0</td>
</tr>
</tbody>
</table>

Total: 20 (Max: 36)
Conversion Checklist for Post Acute Care

CORE CONSIDERATIONS

<table>
<thead>
<tr>
<th></th>
<th>By Construction Manager</th>
<th>Post-Acute COVID Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mold/Hazmat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mold/Haz Mat Removal or Containment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HVAC - direct exhaust room units</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEPA filtering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Create negative in pressure room by optimizing existing exhaust system (to try to get to 0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensure air discharge is far enough from the intake</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protect building duct system from contamination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zip wall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disengage locks of room doors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Install carpet protector over existing carpet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emergency Back-up and Power</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verify Electrical Outlets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Install wireless nurse call + camera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Install O2 temporary piping system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Segregate staff area on each floor, if possible add sinks in the corridor or use first room by elevator as staff support are for donning and doffing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Install cleanable Partitions/Plastic to subdivide multiple occupancy rooms (18" below ceiling)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>By Hotel</th>
<th>Post-Acute COVID Care</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hotel Bed (with medical linen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hotel Chair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hotel Desk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hotel Wardrobe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hotel Plumbing Fixtures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>By Others (Hospital)</th>
<th>Post-Acute COVID Care</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ventilator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telemetry/Pump on IV Stand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stool</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over bed table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mobile Workstation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linen Hamper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sharps/Gloves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hand Sanitizer Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infectious Waste</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Portable Med Gases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use of Concentrator for O2</td>
<td></td>
</tr>
</tbody>
</table>
Space Conversion Diagram for Post Acute Care

HOTEL ROOM | CORE CONSIDERATIONS

1. Mold/Hazmat

2. Ventilation
 - Negative Pressure / HEPA filtering / Explore direct room exhaust

3. Contact Surfaces
 - Disengage door lock

4. Protect Care Team
 - Add sinks and area for donning and doffing in corridor/room by elevator

5. Double Occupancy
 - Install cleanable partitions/plastic to subdivide rooms

HEALTHCARE SPACE MODIFICATIONS

- Instead of removing carpet, we recommend carpet protectors to be installed for agility

- Restroom door is often located in proximity to the front door, potentially posing challenges for placement of zip wall

- Disengage door lock to minimize surface contact. Install wireless nurse call + camera.

E10: Privacy curtain is best avoided for mitigation of infectious disease contamination.

E8: Beyond hand sanitizers, install sinks for staff in corridor or room by elevator
Space Conversion Diagram for Post Acute Care

HOTEL TYPICAL FLOOR PLATE | CORE CONSIDERATIONS

- Dedicate room(s) by elevator for staff and materials.
- Explore possibility for O2 tubing from the exterior of building.
- Explore possibility for direct exhaust room units.
- Ensure elevators have dimensions to accommodate stretchers.
- If possible add sinks in the corridor or in existing janitorial closets with mop sinks.

Source: USACE hotel room to healthcare room diagram
Space Conversion Diagram for Post Acute Care

HOTEL GROUND FLOOR PLATE | CORE CONSIDERATIONS

- Dedicate room(s) by elevator for staff and materials.
- Explore possibility for O2 tubing from the exterior of the building.
- If possible add sinks in existing janitorial closets with mop sinks.
- Ensure elevators have dimensions to accommodate stretchers.
- Explore possibility for direct exhaust room units.

Source: USACE hotel room to healthcare room diagram
Space Conversion Diagram for Post Acute Care

DORM ROOM | CORE CONSIDERATIONS

1. Mold/Hazmat
2. Ventilation
 Negative Pressure / HEPA filtering / Explore direct room exhaust
3. Contact Surfaces
 Disengage door lock
4. Protect Care Team
 Add sinks and area for donning and doffing in corridor/room by elevator
5. Double Occupancy
 Install cleanable partitions/plastic to subdivide rooms

- Instead of removing carpet, we recommend carpet protectors to be installed for agility
- Disengage door lock to minimize surface contact. Install wireless nurse call + camera.
- Explore possibility for direct exhaust room units
- Beyond hand sanitizers, install sinks for staff in corridor or in existing janitorial closets with mop sinks
Space Conversion Diagram
for Post Acute Care

DORM FLOOR PLATE | CORE CONSIDERATIONS

1. Mold/Hazmat
2. Ventilation
3. Contact Surfaces
4. Protect Care Team
5. Double Occupancy

- Explore possibility of converting floor lounges into nurse stations
- Ensure elevators have dimensions to accommodate stretchers
- If possible add sinks in the corridor or in existing janitorial closets with mop sinks
- Dedicate room(s) by elevator for staff and materials.
- Explore possibility for direct exhaust room units
- Explore possibility for O2 tubing from the exterior of building
Convention Centers & Arenas for Post Acute Care

Ron Gorham, Perkins & Will (sub-committee chair)
Millie Baker, HGA
Gretchen Battle, CannonDesign
Sean Brice, Thompson Consulting, Inc.
Andrew Brumbach, SmithGroup
Matthew Cotton, SmithGroup
Silvia Cuervo-Cortazar, NBBJ
Doug Erickson, FGI
Alison Faecher, SmithGroup
Jeff Galvin, Lavallee Brensinger Arch
Keith Garratt, SmithGroup
Anne Garrity, Tsoi Kobus Design
Randy Kaiser, Turner Healthcare
Tim King, Creative Office Pavilion
Paul Kondrat, CannonDesign

Cindy Lee, CannonDesign
Michael Lorimer, Arup
Sarah Markovitz, NBBJ
Brian McKenna, CannonDesign
Anthony Mistretta, Perkins & Will
Kevin Neumann, E4H Architecture
Liz Normand, Shepley Bulfinch
Daniel Quinn, Colliers Project Leaders
Ryan Quinn, Perkins & Will
Alberto Salvatore, HED
Harry Shanley, CannonDesign
Danielle Santos, Lavallee Brensinger Arch
Amy Sowersby, Turner Healthcare
Evan Wyner, Colliers Project Leaders
Bobbe Young, HED
PROGRAM YOUR SITE TO ACCOMMODATE POST-ACUTE CARE

Patient Care Bays
- access behind wall for maintenance
- (1) oxygen
- (1) medical air power for bed, equipment, charting
- critical power for vent
- task/exam light
- visibility to staff
- hand-sanitizer station
- patient privacy (curtains or walls)
- capable of enclosing and pressurizing either bay or zone

Consider clusters to allow for reduced travel distances, sight line to staff, possible one-way flow or isolated zones for staff, patient, and logistics.

COVID-19 patients: zoned for patient isolation

Logistics
- Pharmacy / Meds
- Treatment Area(s)
- EVS Supplies
- Ambulance Area
- Mobile Trailer Parking
- Waste Management
- Materials Management
- Dining / Social
- Infrastructure – IT, Power, Med Gas, etc.

Patient Support
- Nurse / Staff Station
- Patient Showers
- Toilets / ADA
- Handwash Stations
- Sanitizing Stations
- Equipment Storage
- Clean Supplies
- Soiled Area

Staff Support
- Lockers / Changing Rooms
- Toilet / Shower
- Staff Respite Area
- Telemedicine

Entry / Screening
- Screening stations
- Testing
- PPE Station
- Handwash / sanitizing station

SAMPLE PROGRAM DIAGRAM
Patient Care Zone
1. **POD:** 3 sides x 5 bays = 15 bays ea.
2. Multiple Pods / Designate Zones
3. Flexible / Scalable
4. Adaptable to most large open space

Patient / Staff Support
1. Visibility – Nurse to Patient
2. On Stage / Off Stage Capable
3. Optimized Clinical Operation
4. Equipment Storage / PPE

Modular / Prefabrication
1. Unitized Headwall / Wall Panels
2. Freestanding Mechanical Units
3. PRIORITY: SPEED TO MARKET
SPACE CONVERSION DIAGRAM
SAMPLE PLAN – LARGE CONVENTION CENTER

Entry / Screening
1. Segregated / Secured
2. Triage / Screening Capable
3. Decon (Optional)

Patient Care Area
1. Non COVID
2. COVID 19 Positive
3. Patient Support

Staff Support
1. Dining
2. Lockers
3. Touch Down Space

Logistics
1. Materials / Waste Management
2. Ambulance
3. Pharmacy
4. One-way flow
Patient Care Zone
1. Patient Care Bays - Density
2. Multiple Pods / Designated zones
3. Flexible / Scalable
4. Adaptable to large open space

Patient / Staff Support
1. Visibility – Nurse to Patient
2. On Stage / Off Stage
3. Equipment Storage / PPE
4. Dining / Social

Modular / Prefabrication
1. Unitized Headwall / Wall Panels
2. Freestanding Mechanical Units
3. PRIORITIZE: SPEED TO MARKET

Logistics
1. Materials / Waste Management
2. Ambulance
3. Pharmacy
4. One Way Flow
Patient Care Zone
1. Patient Care Bays - Density
2. Multiple Pods / Designated zones
3. Flexible / Scalable
4. Adaptable to large open space

Patient / Staff Support
1. Visibility – Nurse to Patient
2. On Stage / Off Stage
3. Equipment Storage / PPE
4. Dining / Social

Modular / Prefabrication
1. Unitized Headwall / Wall Panels
2. Freestanding Mechanical Units
3. PRIORITIZE: SPEED TO MARKET

Logistics
1. Materials / Waste Management
2. Ambulance
3. Pharmacy
4. One Way Flow
SPACE CONVERSION DIAGRAM
SAMPLE IMAGES – LARGE CONVENTION CENTER

Boston Convention and Expo Center – Patient Bays
Javit Center - NYC: Patient Bay
Denver Health MC – Material Supply

Javit Center – NYC: Logistic Area

Denver Health MC – Pharmacy
Modular Solutions + Tents for Post Acute Care

Candice Barter, HGA (sub-committee chair)
William Angelosanto, Wise Construction
Richard Barnett, Colliers Project Leaders
Win Brown, Heywood Hospital
Andrew Brumbach, SmithGroup
Matthew Cotton, SmithGroup
Silvia Cuervo-Cortazar, NBBJ
Doug Erickson, FGI
David Fennell, CannonDesign
Tim King, Creative Office Pavilion
Paul Kondrat, CannonDesign
Cindy Lee, CannonDesign
Inga Lenova, CannonDesign
Michael Lorimer, Arup
Jocelyn Lum Frederick, HC Tangram Design LLC

Anna Mancini, HGA
Sarah Markovitz, NBBJ
Kevin Neumann, E4H Architecture
Rhonda Paradis, Suffolk
Daniel Quinn, Colliers Project Leaders
Andrew Quirk, Suffolk
Harry Shanley, CannonDesign
Amy Sowersby, Turner Healthcare
Jimmy Su, Arup
Dale Taglienti, E4H Architecture Evan Wyner, Colliers Project Leaders
Bobbe Young, HED
SITE APPROPRIATENESS

PRIORITIZING SELECTION AND EVALUATION FOR ADDITIONAL PATIENT CARE CAPACITY

SITE LOCATION
- **Address:**
- **Owner:**

BED ACUITY

<table>
<thead>
<tr>
<th>PROPOSED ADDITIONAL BED NEED PRIORITY</th>
<th>Type & Additional Need</th>
<th>Potential Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical Care</td>
<td>Within institution</td>
</tr>
<tr>
<td></td>
<td>< 12</td>
<td>Within System or PSA</td>
</tr>
<tr>
<td></td>
<td>> 36</td>
<td>Indoor, within 1 mile</td>
</tr>
<tr>
<td></td>
<td>< 12</td>
<td>Indoor, within 1 mile</td>
</tr>
<tr>
<td>Intermediate Care</td>
<td>< 12</td>
<td>Indoor, within 1 mile</td>
</tr>
<tr>
<td></td>
<td>> 36</td>
<td>Indoor, within 1 mile</td>
</tr>
<tr>
<td></td>
<td>< 12</td>
<td>Indoor, within 1 mile</td>
</tr>
<tr>
<td>Med/Surg</td>
<td>< 12</td>
<td>Indoor, within 1 mile</td>
</tr>
<tr>
<td></td>
<td>> 36</td>
<td>Indoor, within 1 mile</td>
</tr>
<tr>
<td></td>
<td>< 12</td>
<td>Indoor, within 1 mile</td>
</tr>
<tr>
<td>Post Acute</td>
<td>< 12</td>
<td>Indoor, within 1 mile</td>
</tr>
<tr>
<td></td>
<td>> 36</td>
<td>Indoor, within 1 mile</td>
</tr>
</tbody>
</table>

ABILITY TO CONVERT, EQUIP, STAFF
- **Time Frame:** Immediate, < 2 weeks, < 4 weeks

Checklist for an institution which is starting to address a surge.

Consider as a system – similarly to what BIDMC is doing, shifting volume to New England Baptist that has additional capacity.

This checklist can be combined with similar assessment tools being prepared by the other subcommittee.
SITE APPROPRIATENESS

SELECTION AND EVALUATION OF SITE FOR POST ACUTE CARE

Checklist for Site Evaluation

1. Locate potential site
2. Evaluate
3. Score
4. Determine Bed Count

<table>
<thead>
<tr>
<th>SITE LOCATION</th>
<th>ADDRESS</th>
<th>PROXIMITY</th>
<th>TYPE OF SITE</th>
<th>Weather</th>
<th>Size of Site</th>
<th>Infrastructure Available</th>
<th>Bed Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td>Location</td>
<td>Proximity</td>
<td>Outdoor</td>
<td></td>
<td>Dimensional</td>
<td>Electric, Site Lighting,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indoor</td>
<td>Summer</td>
<td>Data</td>
<td>Sewer, Water, IT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winter</td>
<td>Open Clear</td>
<td>Existing Uses available</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consider</td>
<td>Area</td>
<td>for potential use</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Additional</td>
<td>Parking, Delivery access,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area</td>
<td>Garage, Storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commercial Kitchen,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Refrigeration, Toilet,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Staff areas, Other (define)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SITE LOCATION</th>
<th>ADDRESS</th>
<th>PROXIMITY</th>
<th>TYPE OF SITE</th>
<th>Weather</th>
<th>Size of Site</th>
<th>Infrastructure Available</th>
<th>Bed Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td>Location</td>
<td>Proximity</td>
<td>Outdoor</td>
<td></td>
<td>Dimensional</td>
<td>Electric, Site Lighting,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indoor</td>
<td>Summer</td>
<td>Data</td>
<td>Sewer, Water, IT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winter</td>
<td>Open Clear</td>
<td>Existing Uses available</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consider</td>
<td>Area</td>
<td>for potential use</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Additional</td>
<td>Parking, Delivery access,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>area</td>
<td>Garage, Storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commercial Kitchen,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Refrigeration, Toilet,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Staff areas, Other (define)</td>
<td></td>
</tr>
</tbody>
</table>
SITE ADAPTATION – MODULAR & TENT
HOW TO ADAPT YOUR SITE TO ACCOMMODATE POST-ACUTE CARE

Site Preparation
- Excavation/Fill/Slab
- Temporary Site Work & Access
- Parking

Regulatory
- Life Safety Review/AHJ
- Waiver of DPH
- Special Permit/Oversize Load
- Temporary Permitting
- ADA/Accessibility

Infrastructure
- Sanitation
- Potable Water Source
- Adequate Power
- Emergency Power/Generator
- Adequate WiFi (Firewall)
- Telephone
- Security
- HVAC (filtration, pressure)
- Med Gas access/storage

Additional Requirements
- Food Service
- Materials Management
- Linen Supply
- Clean/Soiled Delivery
Keeping medical professionals healthy during the COVID-19 pandemic is essential in both slowing the rate of infection and meeting heightened staffing needs. Shortages of personal protective equipment (PPE) supplies make the task difficult. Walk-in testing booths eliminate physical provider-patient exposure in a modular format that can be deployed for temporary testing operations. More information is available via this link.
SPACE CONVERSION DIAGRAM – TESTING BOOTH

For Child & ADA

Each unit can be stand-alone and added based on needs

Located outdoors in a tent or temporary enclosure

Exhaust register ducted to remote fan

Top panel to house the lights, single point electric connection, etc.

Door w/ privacy film

Overhead light

Solid panel

Glovebox w/ clear glazing panel

Phone w/ intercom speaker

Flooring
SPACE CONVERSION DIAGRAM – TESTING BOOTH

- Eliminates physical provider-patient exposure
- Minimizes PPE consumption
- Facilitates faster testing cycles without interruption
- Mobile, modular structure for temporary testing operations
- Outdoor installation with limited infrastructure needs
- Easy connection to existing building electrical source

Contact:
mbailey@cannondesign.com

This concept by CannonDesign is licensed under Creative Commons Attribution 4.0 International
MODULAR TENT – FLEXIBLE POST ACUTE CARE

Clinical Services Supported
1. Wide variety of configurations available, including Testing modules, hospitals from 15-200 beds
2. Lab, Imaging, Pharmacy modules
3. Surgery modules
4. Intake, Triage, Emergency modules

Support Services Accommodated
1. Food Service/Dining modules
2. Supplies Management module
4. Administrative Support

Infrastructure Available
1. Environmental Control Units
2. NPI Filtration
3. Potable, Grey, Black Water Bladders
4. Generators

Considerations
• Evaluate need for negative pressure units
• Need staff support connector to all modules
• Typical 4-week delivery time
• Set-up in 2 days or less

Adaptation
• Bed units can be used for staff respite/sleeping
• Post-Acute Patients will need entertainment area and rehab space

Considerations
• 5-ton ECU typical
• Patient & staff bathing facilities require special purpose modules or adjunct support in existing facilities
• Temporary morgue facility by others
MODULAR TENT – FLEXIBLE POST ACUTE CARE

20' x 45.5' Isolation System
With Shower And Latrine
(6.10m x 13.87m)

Privacy Curtains
Qty: 4 Sets

Isolation Partition
Qty: 1

Vestibule
With Bump Thru Door
Qty: 1

Partition With Personnel Door
Qty: 1

2,000 Gallon Black Water Bladder

2,000 Gallon Grey Water Bladder

2,000 Gallon Flexible Water Bladder

CONFIDENTIAL DRAWING
THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF ALUNA STRUCTURES LTD. REPRODUCTION IN WHOLE OR IN A PART WITHOUT THE WRITTEN PERMISSION OF ALUNA STRUCTURES LTD. IS PROHIBITED

CONCEPTUAL DRAWING
ALL DRAWINGS ARE FOR VISUAL REPRESENTATION ONLY AND SUBJECT TO CHANGE

HAIO – Healthcare Surge Solutions Task Force April 24, 2020 Release 3

Modular Solutions + Tents

58
MODULAR TENT – FLEXIBLE POST ACUTE CARE

12-Shelter Medical Facility with 100-Beds
Negative Pressure / Isolation

BLU-MED Response Systems
The World's Leader in Deployable Medical Facilities®
MODULAR SOLUTIONS

PPE Disinfection
1. Skinned the walls and floor
2. Installed eyelets on the wall
3. Cabling will be run horizontally and hold PPE for disinfecting

Temporary Morgue
1. Reefer box (insulated trailer) rented by client
2. Outfitted with unistrut, brackets, SS platforms/shelving, flooring ramp
3. Temp refrigeration unit
Prefabricated Patient Care Spaces

Critical to Quality
1. Exterior Window
2. Fixed Medical Gases
3. 15'-0" Wide Room
4. Donning Station
5. Doffing Zone
6. Viewing Window/Door
7. Mobile Carts

Expert tested in virtual reality simulation by:
- Lean Process Engineers
- Critical Care Nurse trained in COVID-19 protocols
- Hospital Environment Specialist in Infection Control

- Exterior Windows: Reduce staff stress, improve staff well-being and improve job satisfaction. Exterior window could be used for emergency contact with family.
- Fixed Medical Gases: Provide access to ventilators, cardiac and vital monitoring and respiratory treatment at the headwall.
- The 15' wide room orientation provides adequate space for bed transfers and portable chest x-ray.
- Doffing Zone: Allows removal and disposal of contaminated PPE with hand wash prior to entering clean corridor.
- Donning Station: In alcove allows for hand washing prior to donning PPE equipment and entering room.

Mobile carts with medical supplies for direct patient care and patient charting. Supplies and additional charting alcoves are also provided outside the room in clean zone.
CONSTRUCTION TRAILER CONVERSION DIAGRAM

TYPICAL DOUBLE WIDE TRAILER

Space Benefits
1. Typical size 60 ft wide. Option to gang multiple units to create larger spaces.
2. Interior flexibility to accommodate multiple layouts. Multiple openings and doors can be provided to create a one way flow.
3. Options to provide hand washing sinks, toilets and showers and other support spaces inside the unit.

Changes recommended
1. Use of stick-build construction for the interior layouts to shorten completion date.

Challenges
1. Require transportation permits for oversized loads. Teams will have to coordinate with local authorities.
2. Infrastructure required for MEP will vary depending on the size and location.
Trailer sizes

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
<th>Boxes</th>
<th>SF</th>
<th>BEDS</th>
<th>~add* space needed</th>
<th>TOTAL FOOTPRINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>24</td>
<td>2</td>
<td>1536</td>
<td>8</td>
<td>750</td>
<td>2286</td>
</tr>
<tr>
<td>64</td>
<td>36</td>
<td>3</td>
<td>2304</td>
<td>750</td>
<td>3054</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>48</td>
<td>4</td>
<td>3072</td>
<td>16</td>
<td>1000</td>
<td>4072</td>
</tr>
<tr>
<td>64</td>
<td>60</td>
<td>5</td>
<td>3840</td>
<td>1000</td>
<td>4840</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>72</td>
<td>6</td>
<td>4608</td>
<td>24</td>
<td>1200</td>
<td>5808</td>
</tr>
<tr>
<td>64</td>
<td>84</td>
<td>7</td>
<td>5376</td>
<td>1200</td>
<td>6576</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>96</td>
<td>8</td>
<td>6144</td>
<td>32</td>
<td>1400</td>
<td>7544</td>
</tr>
<tr>
<td>64</td>
<td>108</td>
<td>9</td>
<td>6912</td>
<td>1400</td>
<td>8312</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>120</td>
<td>10</td>
<td>7680</td>
<td>40</td>
<td>1500</td>
<td>9180</td>
</tr>
</tbody>
</table>

Power and Data considerations
1. Use of rented generators for normal and emergency power. Considerations for space and hook up.
2. Power Lines can be hooked to permanent plant or closest utility. Considerations for lines thru lot and paths.

HVAC
1. HVAC is integral to the trailers. Additional portable units are needed to provide negative air.

Plumbing
WATER – TOILETS (waste holding tank or potential waste line w pumping)
1. Toilets integral to units with exterior waste holding tank. Might not be enough toilets – add porta-pottys.
2. Option to add advanced exterior portable toilet units.

WATER – SHOWERS (large waste holding tank or potential waste line w pumping)
1. Showers available in trailer or as an advanced exterior portable units.

WATER SINKS
1. Sinks integral to trailers as kitchen set up/other - piped from source or tanks
2. Portable hand washing units that can be fill/empty daily.
OTHER CONSIDERATIONS

EXTREME WINTER CONDITIONS
1. Water lines and tanks freezing will need specialty-constructed ideas to heat these utilities. Heating blankets, boxed enclosures, etc.
2. Porta-pottys will need some sort of temp ‘hut’ to heat to avoid freezing or climate discomfort for patients/staff.
3. Portable shower units (exterior) may need some type of ‘bridge’ constructed to avoid outside travel.

FOOD
1. Food must use institution/facility or local food service (caterers/banquet). 3 meals a day delivered, limited rotation menu. Snacks distribution – brown bag/other.

DUMPSTER/Trash
1. Room for a dumpster can will be needed for flow of food and potential other wastes.
Dissemination beyond HAIO through Healthcare Networks and Local & National Organizations

HAIO Surge Solutions Library:
Please send information to:
Haio.surgesolutions@colliers.com

To review and download information:
https://www.dropbox.com/sh/kpx07e3dv8yymxl/AADhxvqzM_IT21hDNw485gmoa?dl=0

To Provide Feedback Please Contact:
Richard Barnett
Colliers Project Leaders
Richard.Barnett@colliers.com

Dominic Gagnon
Colliers Project Leaders
Dominic.Gagnon@colliers.com

Stanley Hunter
Colliers Project Leaders
Stanley.Hunter@colliers.com

Teresa Wilson
Colliers Project Leaders
Teresa.Wilson@colliers.com

A special thanks to Colliers Project Leaders who have supported the efforts of the HAIO Surge Solutions Process: Richard Barnett, Matt Dunn, Skyla Eastman, Dominic Gagnon, Stan Hunter, Matt Morrisey, Joe Naughton, Adam Troidel, Dan Quinn, Teresa Wilson, Evan Wyner