

EM Scopes Belong on the Moon

E4H Environments for Health Architecture

Introductions

Brian DiLuiso, AIA

25+ years - academic, clinical research, medical device, pharmaceutical, and biotechnology business sectors

Chip Calcagni, AIA
30+ years - medical, research,
and laboratory spaces for major
healthcare institutions

By the numbers

- 100% health & life sciences
- 6,500+ projects
- 400+ clients
- 7 offices
- 160+ design professionals
- 40+ years experience
- \$6 billion in completed projects

Electron microscopes were invented in 1931

Max Knoll and Ernst Ruska

12,000 times magnification

What is an electron microscope or TEM?

- Technique for obtaining high resolution images of biological and non-biological specimens
- Investigate the detailed structure of tissues and cells
- View thin specimens (tissue sections, molecules) through which electrons can pass generating a projection image
- Light microscopes have useful magnifications below 2000x while TEM up to about 10,000,000x

TEM

SEM

What is Cryo-EM?

- Process begins with rapid vitrification so samples are not damaged
- Series of 2D images is acquired
- Data reconstructed to form 3D model of biological structure
- 3 Angstrom scale (1 ten-billionth of a meter or 0.3 nanometers)

Nature Methods 13, 24-27 (2016)

The business of EM scopes

Science Industry **MATERIALS SCIENCE ELECTRONICS** Core Universities, institutes, companies and government labs Primarily semiconductor engaged in material science manufacturers research & nanotechnology **NATURAL RESOURCES** LIFE SCIENCES Growth Universities, institutes, Mining and oil & gas companies, government labs and including industry service pharmaceutical companies providers engaged in life sciences research

04-Apr-2016 | Published By: Market Research Store

The business of EM scopes - Project & Staff Operating Costs

Case Study (4,300SF)

- 4 cryo electron microscope suites
- Sample prep laboratory
- Open workspace
- MEP support space
- Server Room
- Dedicated infrastructure (AHU, chillers, pre-action)

Initial Project Costs

- Construction Costs: 4,300SF x \$1,630/SF = \$7M
- Scope Costs: \$4M x 4 scopes = \$16M
- Soft Costs: \$500k
- Total Project Costs: \$23.5M

Staff Operating Costs

- 275 Days/Year (maintenance + downtime)
- 5 full-time staff (4 techs + 1 IT/Computational)
- 275 days x 24 hours = 6,600 Beam Time Hours/year
- Total Staff Operating Costs: 6,600 hours x \$90/hour = \$600K/year

Services Offered	Non-Profit	For Profit
Technician Services	\$80/hour	\$250/hour
Transmission Electron Microscopy		
TEM Sample Prep (investigator prepares samples)	\$275/sample	\$550/sample
Beam Time (investigator runs scope)	\$70/hour	\$300/hour
TEM Sample Prep (GEM Lab prepares samples)	\$320/sample	\$640/sample
Beam Time (GEM Lab runs scope)	\$115/hour	\$230/hour
Sectioning (includes Technician Services)	\$80/hour	\$250/hour
GEM Evaluation by Staff (if applicable)	\$50/hour	\$100/hour
Negative Staining (includes 30 min beam time w/lab staff)	\$60/sample	\$120/sample

New research facility planning

Plan space to accommodate Cryo EM scope technology! (Adapting a building is complicated)

- Structural slab on grade
- High bay space
- Space for dedicated MEP systems
- Cryo delivery & storage
- Data and server storage

So, your client wants to build a Cryo EM scope facility!

- High demand
- No time or \$\$ to build
- Rush to market
- Available space likely needs significant infrastructure upgrades

Feasibility study

- Dimensional clearances
- Infrastructure capacities
- Future construction activities
- Seasonal operations
- Structural/geotechnical
- Ambient conditions

Project Timeline

Key Environmental Influencers

Key influencers - vibration

Design considerations - vibration

- Isolation platforms
- Floor slab design (mass vs. isolated)
- LN2 Dewar deliveries

Key influencers – electromagnetic fields

Design considerations - electromagnetic fields

- Passive Metal Shielding
- Active Shielding System
- Location of MEP Equipment

Key influencers – acoustics ◀ᢀ

Design considerations - acoustics (1)

- Scope Acoustical Enclosure
- **Acoustical Wood Framed Partitions**
- Sound Door and Windows
- Acoustically Lined Ductwork
- Acoustical Wall & Ceiling Panels
- Slow Air Movement (HVAC)

Key influencers – temperature

Design considerations - temperature

- Radiant chilled water panels
- Laminar air flow
- LED lighting
- < 80% relative humidity</p>
- ISO8 clean air advised

Lean & operational flow considerations

- Sample prep lab
- Dedicated mechanical space
- Safety low oxygen sensors (Sulfur Hexafluoride (SF6) & LN2 leakage, cameras, emergency buttons)
- Storage servers for data collection, maintenance parts and tools
- How will the researchers interface with the microscope, locally or remotely?
- How will microscope service be performed?
- Operational redundancy

Case study - Memorial Sloan-Kettering Cancer Institute

Case study - Harvard Medical School

Questions?

Brian DiLuiso, AIA bdiluiso@e4harchitecture.com

Chip Calcagni, AIA ccalcagni@e4harchitecture.com

